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TESTS FOR THE GAMMA DISTRIBUTION WITH

ESTIMATED SHAPE PARAMETERS

By

R.A. Lockhart and M.A. Stephens

Summary.

It is well known that the distributions of the goodness-of-fit

statistics W2 , U2 , and A2 do not depend on location and scale

parameters even when these parameters must be estimated. It has

generally been assumed, however, that when shape parameters must

be estimated the null distributions of these statistics would depend

too severely on the unknown parameters to permit their use in practice.

Exact asymptotic distributions of these statistics are presented for

the two parameter gamma family of distributions. Critical points are

given in tables constructed so as to avoid any need for extrapolation.

The results presented show that the tests can be expected to be useful

in practice.
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1. Introduction.

Goodness-of-fit tests such as the Cramer-Von Mises statistic W2

are distribution free when the distribution being tested is completely

specified. When parameters must be estimated, as when testing for the

normal family, the situation is not so nice. If the parameters are those

9
of location and scale the null distribution of W will depend on the

particular family being tested but not on the exact values of the para-

meters being estimated. When a shape parameter must be estimated as in

the gamma family, the distribution of the test statistic will generally

depend, even asymptotically, on the unknown true value of the shape

parameter. In this paper we explore the extent of the dependence of

critical points on the shape parameter in the two-parameter gamma family.

Our major conclusion is that the dependence is small enough to make the

tests useful in practice.

In this paper we discuss the behavior of the goodness-of-fit statistics

W2 , U2 , and A2  for testing the hypothesis H : that a random sample of

size n comes from the gamma distribution with density

(1.1) f(x:; ,) = 7(a) -l_a C-lexp('x/8) 0 < x

Following Stephens (1976) we distinguish four situations: Case 0, where

both a and - are. kncn; Case i, where 6 is known but a must be

estimated; Case 2, where a is known but a must be estimated and Case 3,
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where both parameters are unknown and must be estimated. Case 2 has been

studied by Pettitt and Stephens (1975). In this paper we concentrate on

Case 3 but include the critical points for cases 1 and 2 for the sake of

completeness. Those for Case 2 have been recomputed.

In section 2 we review briefly the relevant theory for Case 3 in

order to fix notation and to record the relevant formulae for the gamma

distribution. In section 3 we discuss the problem of computing the

asymptotic critical points of the statistics and tabulate the results.

An important feature of these tables is that there is never any need for

extrapolation--only interpolation. Section 3 contains the relevant theory

as well as some useful new identities for computing asymptotic moments of

the statistics. Some general conclusions and speculations are in section 4.

2. Asymptotic Distributions of W2 , U2 and A2.

Suppose XI,X2, ... ,Xn  are a sample from the gamma distribution (1.1)

with distribution function F(x,e) where e = (a,3) is in (0,-) x (0,-)

Let F be the empirical distribution function. Let 6 = (6,) be then

maximum likelihood estimates of (a,a) -- see Johnson and Kotz (1970, page

187). The Cramer-Von Mises statistic is defined by

(2.1) w2 = n (F (x)-F(x,) 2F(dx,0)

(See Stephens (1977) for compuLing formulae.) The asymptotic theory

reproduced here is now standard--see for example Stephens (1976).
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Asymptotically (2.1) is equivalent to

(2.2) n { Fn(x)-F(x,O)} 2F(dx,e) = {Yn(t)dt

where

(2.3) Y (t) =n [F nF (t)}

Here F0l(t) is the inverse of the map x - F(x,e).

The process Y converges weakly in D[0,1] to a mean zero Gaussiann

process Y(t). The covariance of Y is given by

(2.4) P(s,t) = p0 (s,t) -(s) Tt(t)

where P0 (s,t) = min(s,t)-st is the covariance of the Brownian bridge

appropriate for W2  in Case 0, t is the inverse of the Fisher informa-

tion matrix and 4(s) = - F(x,e) evaluated at x = F(s). For thege e

gamma distribution in Case 3 we have

f X/ B e-u u lnudu-s (L)_

(2.5)
1 F(e-x B O 0 +i) e-X/S

and
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[c (at) -c(at) 1
(2.6) =

c (~a ) c ( (x ( CX

where tp(a) =ln(F (a)) is the diganmma function, ip(a) is its deriva-
da

-i
tive, the trigamma functionand c(a) = (a'(a)-l) (See Abramowitz and

Stegen (1965) for a discussion of these functions and useful recurrence

relations.)

22

For A2  the situation is similar except that Y must be divided
n

by w(s) = /is7-s) and p must be divided by w(s)w(t). For U2 , Yn

~1
is replaced by Yt) - f Y(S)ds and p(s,t) is replaced by

PO(st)-(W(s) -{ (u)du)Ti((t) - 4(u)du)
0 0

where now p0 (s,t) = min(s,t)-st+l/12-(s-s 2 +t-t2)/2.

For all three statistics then the asymptotic distribution is that of

Y 2(t)dt where Y is a mean zero Gaussian process with covariance p:0

of the form 00 (s,t)-4(s) T(t) where P0  is independent of e. This

distribution is that of = A where the V. are independent and

identically distributed chi-square random variables on one degree of

freedom and 0 < X1 < X2 < .. are the eigenvalues of the integral

equation

(2.7) h(s) = X J h(t)p(s,t)dt

9 4



In Case 0 the eigenvalues and eigenfunctions can be found explicitly for

the three statistics studied here (again the reader is referred to Stephens

(1976) for details and history). We will denote the Case 0 eigenvalues by

k. and call them the standard weights. We use f. to denote the corres-1 1

ponding orthonormal eigenfuntions.

Now expand (2.4) in terms of fi. Call

(2.8) a. = J (s)fi(s)ds
S 0

The eigenvalues of (2.7) are then the roots of

(2.9) D(X) = 0

where D is the Fredholm determinant of (2.7) given by

(2.10) D(X) = D 0(XDet(I + a al/-XX)
i=1

with D the Case 0 Fredholm determinant and I the 2x2 identity matrix.

3. Computation of Asymptotic Critical Points.

The process of calculating the asymptotic critical points of these

statistics is long and will be described step-by-step. Since all the

statistics are scale invariant the resLlts do not depend on B. Accordingly,

we use 8 = I for the remainder of the paper.

Step 1: Fourier coefficients.

The first step is to calculate the Fourier coefficients a. with (2.8).
1
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For W2  the eigenfunctions are f.(s) = V2 sin(7js). With p(s) asJ

recorded in (2.5) the resulting formulae involve double integrals but

integration by parts produces the following simpler formula:

5(2jr(a)) - 1  cos(TrjF(x,ct,1))e-Xx a - l lnxdx

(3.1) a. =

52 (Trjr(c)) - 1 f cos(TrjF(x,c,l))e-Xxadx

For U2  the eigenfunctions are

f 2 j (s) = 2 sin(2Trjs)

and

f2. j(S) = v2 cos(2rjs)

Hence a2j for U2  is given by a for W2 while after some integration

by parts we obtain

[2-1/2 (Trjr(c) - 'J sin(27rjF(x,a,l))e-Xxt-llnxdx

(3.2) a2.~l -- a -2 F(a)- 2 TO cos(2TrjF(x,('l))e-
2 Xx2a-ldx

For A2  the ith eigenfunction is the ith  Ferrar associated Legendre function

(see Anderson and Darling, 1952). After some algebra and integration by parts

we obtain
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J) P (2s-l)e xa lnxdx

(3.3) a. = c.J U

(a)i f P (2s-l)e-Xxa-l x ) d x

where c. [(2j+l)/(j(j+l))]I / 2 and p. is the jth Legendre polynomialJJ

(see Abramowitz and Stegun 1965, page 332).

It was judged necessary for the purposes of Step 2 to obtain numerical

values of the integrals (3.1-3) for j from I to 50 and for a variety of

shapes a. Thus for each value of the shape there were 300 numerical

integrals to be done. Many of the integrands involve similar functions.

Moreover, the eigenfunctions for large j may (and for A2 must) be

evaulated by recursion from those for small j. In order to take advantage

of these properties we wrote a routine to do Romberg extrapolation (see

Ralston (1965, page 121)) of the trapezoidal rule for an array of functions.

For integer values of a the gamma cumulative F(x,a,l) can be computed

explicitly. We therefore computed the six integrals for a from 1 to 20

and for j from 1 to 50 simultaneously. The result was an important saving

in computer time--the integrals still required around 10 hours of CPU time

on an IBM 4341.

Step 2: Roots of the Fredholm Determinant.

The next step is to find the roots of D(X) = 0. In all cases the poles

in the determinant term in D cancel the zeros in D so it suffices to

search for the rocts of the determinant term. The series = aj a

must be truncated somewhere. We found by experiment that 400 terms are adequate.

The difficulty is that we were able to compute only 50 a.'s. It proved

possible, however, to extrapolate the a.'s with confidence since the a.'s
7 U



were seen to fall away smoothly with j. We therefore carried out the
-r

extrapolation from 50 to 400 by fitting a. = k j We then searchedJ

each interval X. < < Xj l exhaustively stopping when about 200 roots

were found.

Step 3: Critical Values.

The final step is to compute the critical points of Q = E = V./X.,

J J

We used two different methods. First, Pearson curves were fitted using

the first four cumulaT.Cs of Q. Second, the Imhof technique (see Imhof,

1961) of numerically inverting the characteristic function of Q was

used.

The cumulants needed for use with Pearson curves were found several

th
ways. First, the r cumulant < is given by (Stephens, 1976):

r

r-l -r
(3.4) r = 2 (r-l)! I Xr .

r j=l

This sum converges quickly for r > 2 but for r = 1 is unsatisfactory.

The sum of those terms truncated away in a finite approximation may,

however, be calculated approximately using the fact that j 2X. has a
J

computable limit.

A second formula for K is (Stephens, 1976)r

(3.5) <= r (ss)ds
r JO

where 1 l and (s0t) = r(su)o(ut)du. For r= 1 and integral

values of a these integrals are tractable but very messy. Lengthy

recurrence relations were developed (details may be obtained from the
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authors) for these calculations, reducing the calculations to gamma,

digamma and trigamma function evaluations--at least for W and U

For non-integral a and A2  even numerical integration seemed formidable.

A third, rnd seemingly new, approach to the calculation of K is

r

as 'ollows. Expand the integrals in (3.5) in terms of the eigenfunctions

f of P0 ' The result is the following:j

0(s,s)ds - 0 (s,s)ds _ T
o oj=1

I K'l T T T

P (s,s)ds J 2 (s,s)ds- 2 a$aj/X.+ 7 aj akak$a.

-0 I s~s 3 j 2 kk
0 "j

P3(s,s)ds P0 ,(s,s)ds- 3 a (X2 + 3 1 ajtakak$aj ,

+2 _~~~aX+ aTj T x* 2  T T ,*

0 0~K J j jk

(3.6) 3j 
0, 

kjkk

T a T T
-4aj akaa $aa

j,k,

f0 P4( ss)ds fl 0 (s,s)ds -4 Y a T (tj) 3

+ 2 k a ajakaka/XX+4 Taj aka W/ 2

11j kij k j j k k k

j,k,Z j

+ 11 Tt Ts T 4 Ts
j,k,Z,m a~kkaa+mma

These series have the advantage of converging very quickly even for the

mean--that is r= 1. For non-integral shapes and for A2  these calculations

were the only ones available for the mean. For integral a and Case 2
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where the integrals can be done explicitly for r= 1 (see Pettitt and

Stephens, 1975), the series (3.6) agreed very well with the results of

direct integration (differing only in the seventh or eighth significant

digit). These series also can be used to check the accuracy of the computa-

tion of the roots of (2.9) since they do not use the computed values of the

eigenvalues X.. Comparison of (3.6) and (3.4) suggests that Step 2, theJ

calculation of the roots of the Fredholm determinant, has been performed

very accurately. Finally it should be remarked that the double, tripl,

and even quadruple sums in (3.6) can all be written as products of singly

infinite sums.

The critical points were also found using the technique of Imhof (1961)

of numerical inversion of the characteristic function of a weighted sum

of chi-squares. The series Ej=l V./X. was truncated at 40 terms and

the tail of the sum replaced by its expected value. Since the standard

deviation of the tail is small compared to its mean, this approximation

was expected to perform well. The approximation was checked in several

cases by using 150 terms of the sum and was found to be excellent.

The Pearson curve and Imhof calculations were found to agree well,

rarely differing by more than 1 in the third significant digit. In tables

1, 2, and 3 we report Lhe Imhof calculations as these are based on the

exact ymptotic distribution. For the sake of reference we record the

cumulants of Q in tables 4, 5, and 6. Case 1 is in tables 1 and 4, while

Case 2 is in tables 2 and 5 and Case 3 is in tables 3 and

The test is now carried out as follows:

1) Estimate whichever parameters are unknown by maximum

likelihood.
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2) Order the sample data points X <X2 ) <'' <X(n and

calculate Z(i) = F(X iwo ) where any parameter which

has been estimated is replaced by that estimate.

3) Calculate W2 , U2 , or A2  using the computing formulae of

Stephens (1977).

4) Enter the appropriate table using a, or when this is

estimated its estimate &, interpolating when necessary

to find the appropriate critical point. Linear interpola-

tion in a is adequate except betw-an a = 20 and a =

where we recommend linear interpolation in 1/a.

The tests are asymptotically exact because a is consistent. In

finite samples, however, entering the tables using & seems risky since

one will normally be taking the critical point from the wrong row. In

the present case, however, the critical points are seen to depend very

little on a, particularly for a bigger than 2 or so. In the case of

U2 the dependence is only one digit in the third significant digit. For a

less than 1 the critical points change rapidly with a but it should

be noted that the standard error of & is small for a near 0--partially

compensating for this defect.

The second source of error in using the tables is, of course, the use

of asymptotic theory in finite samples. A Monte Carlo study by Schneider

and Clickner (1977) shows the critical points even for samples of size 20

are in excellent agreement with the asymptotic points at least for shapes

over 0.5. For samples of size 10 their Monte Carlo points are still

generally within 2 or 3 percent of our asymptotic points. Schneider and

11



Clickner have studied the problem of entering the tables using estimated

shapes and report levels of 4 to 6 percent when testing at a nominal 5

percent level with the true levels rising to 7 or 8 percent for a shape

near 0 and sample sizes of 20. Schneider and Clickner had no points for

a shape of 0. When they encountered estimated shapes smaller than the

least value of a for which they had Monte Carlo points they were forced

to use some sort of extrapolation. This may have led to erroneous readings

of the true level of the test. We plan our own Monte Carlo studies on

this point.

Our tables list two shape parameter values outside the parameter

space--namely, a = 0, a = -. These points are provided to eliminate the

need for extrapolation beyond the ends of the tables. They were computed

using the following theorem:

Theorem 3.1: Suppose p (s,t) is a sequence of non-negative definiten

covariance functions of mean zero Gaussian process {Y (t); 0< t < i}.n

Suppose that, as n tends to infinity, P n converges, uniformly in s

and t, to p(s,t), the covariance function of a mean zero Gaussian

process (Y(t); O< t< 1}. Then Y converges weakly to Y in C[0,1].

Hence, under the conditions of the theorem, fO Y(t)dt converges in

distribution to f Y (t)dt.
0

As a - 0 we find, for W, that p(s,t) converges to

(3.7) P0 (s,t)-sln(s)tln(t)

For A2 the limit is that for W2 divided by w(s)w(t). For U2  the limit

is p0 (st) - (sln(s)+i/4)(tln(t)+l/4) where now p0  is the Case 0 covariance

12



2

for U . We remark that these covariances are those encountered in the

one-parameter exponential distribution--see Stephens (1976).

As a - - the limit is somewhat harder to compute, but a Cornish-

Fisher expansion shows that the covariances converge to those of Case 3

for the normal distribution as defined in Stephens (1976). It should be

noted that as a - - the gamma density becomes more and more normal.

This suggests, but does not prove, the conclusion just reached concerning

the critical points.

Although critical points are reported in Stephens (1976) for Case 3

of the normal distribution using Pearson curves we have recomputed the

points using Imhof's technique. We report these new computations here.

4. Conclusions.

The tests studied will be useful in practice. The convergence of

the finite sample points to the asymptotic points is rapid. In addition

the asymptotic points depend little on the shape for shapes larger than

1 or 2. For small samples and estimated shapes near 0 the asymptotic

points are slightly larger than the finite sample points. Since the

effect of entering the tables with an estimated shape appears to be an

increase in the frequency of rejection use of the asymptotic points even

in small samples is to be recommended.
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TABLE 1.

PERCENTAGE POINTS FOR THE NULL DISTRIBUTIONS OF THE TEST
STATISTICS W2 , U2, AND A2 IN CASE 1

KNOWN SCALE

Statistic Shape Significance Level
Parameter

0.25 0.10 0.05 0.025 0.01 0.005

0 .115 .174 .221 .269 .341 .395
0.2 .113 .169 .214 .260 .322 .368
0.5 .108 .160 .200 .243 .299 .346
1 .103 .150 .186 .223 .273 .311

W 2 .0988 .143 .176 .210 .256 .291
5 .0958 .138 .169 .202 .245 .278

10 .0948 .136 .167 .199 .241 .274
20 .0943 .135 .166 .198 .240 .272

.0938 .134 .165 .196 .238 .270

0 .0903 .129 .158 .191 .234 .256
0.2 .0908 .130 .159 .192 .235 .257
0.5 .0908 .130 .159 .192 .235 .257
1 .0899 .129 .159 .189 .230 .261
2 .0894 .128 .158 .189 .229 .261
5 .0891 .128 .158 .188 .229 .260

10 .0889 .128 .157 .188 .228 .260
20 .0888 .127 .157 .187 .228 .260

.0888 .127 .157 .187 .228 .259

0 .735 1.06 1.32 1.59 1.96 2.24
0.2 .725 1.04 1.29 1.55 1.90 2.17
0.5 .703 .997 1.22 1.46 1.78 2.03

2 1 .630 .956 1.17 1.39 1.69 1.92
A 2 .661 .926 1.13 1.34 1.62 1.84

5 .649 .906 1.!. 1.3n 1.59 1.79
i0 .645 .899 1.0i 1.21 1.56 1.77
20 .643 .396 1.00 1.29 1.S6 1.76

.6411 .803 1.An 1.28 1.55 1.75

Remarks: 1) Points for shape 0 are from the one parameter exponential

family--Case 4 of Stephens (1976).

2) Points for shape - are from Case 1 of the normal family--

see Stephens (1976).
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TABLE 2.

PERCENTAGE POINTS ?OR THE NULL DISTRIBLTIONS OF THE TEST
STATISTICS W2 , U2 , AND A2 IN CASE 2

MO0WN SHAPE

Statistic Shape Significance Level
Parameter

0.25 0.10 0.05 0.025 0.01 0.005

0 .209 .34" .461 .580 .745 .ce7
0.2 .15a .257 .339 .423 .542 .629
0.5 .132 .205 .265 .328 .412 .484
1 .116 .174 .222 .270 .337 .39

T
2  2 .106 .155 .19d .235 .28q .332

5 .0987 .143 .177 .212 .259 .294

10 .0963 .139 .171 .204 .248 .282
20 .0951 .137 .168 .200 .243 .276

.0938 .134 .165 .196 .238 .270

0 .105 .151 .188 .221 .265 .303
0.2 .0950 .137 .166 .199 .244 .266
0.5 .0916 .131 .160 .193 .237 .258
1 .0897 .129 .159 .189 .230 .261

U2  2 .0892 .128 .158 .188 .229 .260
5 .0889 .128 .157 .188 .228 .260

10 .0889 .127 .157 .187 .228 .260
20 .0888 .127 .157 .187 .228 .259
c .0888 .127 .157 .187 .228 .259

0 1.25 1.93 2.49 3.08 3.88 4.50
0.2 0.923 1.41 1.80 2.22 2.78 3.22
0.5 0.803 1.19 1.50 1.82 2.27 2.61

1 0.735 1.06 1.32 1.59 1.96 2.24
2 0.692 0.982 1.21 1.44 1.76 2.01
5 0.662 0.929 1.14 1.35 1.64 1.86

10 0.652 0.911 1.11 1.32 1.59 1.81
20 0.646 0.902 1.10 1.30 1.57 1.78

0.641 0.893 1.09 1.28 1.55 1.75

Remarks: 1) Points for shape 0 are the Case 0 oints.

2) Points for the shape - are the Case 1 points of the normal
distribution--see Stephens (1976).
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TABLE 3.

PERCENTAGE POINTS FOR TFE NULL DISTRIBTIONS OF THE TEST
STATISTICS W2 U2 , AND A2 IN CASE 3

Statistic Shape Significance Level
Parameter

0.25 0.10 0.05 0.025 0.01 0.005

0 .115 .174 .221 .269 .341 .395
0.2 .0924 .136 .168 .204 .252 .296
0.5 .0828 .119 .147 .175 .214 .244
1 .0785 .111 .136 .162 .196 .222

1 2  2 .0762 .107 .131 .155 .187 .211
5 .0748 .105 .128 .151 .182 .206

10 .0744 .104 .127 .150 .180 .204
20 .0741 .104 .126 .149 .179 .203"
0. 0739 .104 .126 .149 .179 .202

0 .0903 .129 .158 .191 .234 .256
0.2 .0896 .128 .156 .189 .228 .254
0.5 .0719 .101 .122 .144 .174 .196
1 .0705 .0984 .119 .141 .169 .190

U 2 .0699 .0973 .118 .139 .166 .187
5 .0695 .0966 .117 .138 .165 .186

10 .0693 .0964 .117 .137 .164 .185
20 .0692 .0963 .117 .137 .164 .185

.0692 .0962 .117 .137 .164 .184

0 .735 1.06 1.32 1.59 1.96 2.24
0.2 .543 .756 .923 1.09 1.33 1.51
0.5 .502 .685 .825 .967 1.16 1.31
1 .486 .657 .786 .917 1.09 1.23

A2  2 .477 .643 .768 .894 1.06 1.19
5 .472 .635 .758 .881 1.04 1.17

10 .471 .633 .755 .877 1.04 1.16
20 .470 .632 .753 .875 1.04 1.16

.469 .631 .752 .873 1.03 1.16

Remarks: 1) Points for shape 0 are from the one parameter exponential
distribution-see Stephens (1976).

2) Points for shape - are from the normal distribution for
Case 3--see Stephens (1976).
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TABLE 4.

FIRST FOUR CUMULANTS OF THE STATISTICS

CASE 1--KNOWN SCALE

W2

Shape Mean x 100 Variance x 103 
k3 x 103 k4 x 104

0 9.26 4.36 6.39 1.54

0.2 7.58 4.03 5.54 1.25

0.5 8.66 3.38 4.05 0.796

1 8.22 2.84 2.96 0.507

2 7.87 2.48 2.35 0.362

5 7.64 2.27 2.02 0.291

10 7.56 2.20 1.92 0.271

20 7.52 2.17 1.87 0.262

7.48 2.14 1.83 0.253

U2

Shane Mean x 100 Variance x 103 k4 k 4 x 105

0 7.18 1.98 1.68 2.32

0.2 7.21 2.01 1.70 2.35

0.5 7.22 2.01 1.70 2.35

1 7.19 1.99 1.69 2.33

2 7.15 1.97 1.67 2.31

5 7.12 1.96 1.65 2.29

20 7.11 1.95 1.65 2.2q

20 7.11 1.95 1.65 2.28
7.10 1.95 1.65 2.28

kq x 102  k4 x12

Shape Mean x 10 Variance x 10 3 x 10

0 5.96 1.39 10.89 14.27

0.2 5.87 1.31 9.65 11.97

0.5 5.69 1.15 7.69 8.62

1 5.50 1.02 6.24 6.40

2 5.36 0.939 5.39 5.20

5 5.26 0.888 4.91 4.56

10 5.23 0.872 4.76 4.37

20 5.21 0.864 4.69 4.28

5.19 0.857 4.62 4.28
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TABLE 5.

FIRST FOUR CT-JULAW'rS OF THE STATISTICS
CASE 2--KNOWN SHAPE

W12

Shape Mean x 100 Variance x 103 k3 x 103 k 4 x 10 4

0 16.66 22.22 8.47 50.79
0,2 12.69 11.52 3.11 13.28
0.5 10.54 6.65 1.29 4.06

1 9.26 4.35 0.639 1.54
2 8.44 3.18 0.372 0.717
5 7.88 2.53 0.248 0.397

10 7.68 2.33 0.213 0.319
20 7.58 2.23 0.198 0.284

7.48 2.14 0.183 0.253

U2

Shane Mean x 100 Variance x 103 k3 x 10 4  k4 x 105

0 8.33 2.77 2.65 3.97
0.2 7.53 2.20 1.90 2.64
0.5 7+27 2.04 1.73 2.39
1 7.18 1.98 1.68 2.32
2 7.13 1.96 1.66 2.30
5 7.11 1.95 1.65 2.29

10 7.11 1.95 1.65 2.2S
20 7.10 1.95 1.65 2.28

7.10 1.95 1.64 2.28

A
2

Shape Mean x 10 Variance x 102 k 3 x 10 2  k4 x 102

0 10.00 5-7.97 104.32 303.97
0.2 7.45 29.21 37.06 76.48
0.5 6.51 18.93 18.33 29.36

1 5.96 13.92 10.90 14.27
2 5.61 11.20 7.45 8.34
5 5.37 9.59 5.65 5.61

10 5.28 9.07 5.12 4.86
20 5.24 8.82 4.87 4.52

5.19 8.57 4.62 4.19
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TABLE 6.

FIRST FOUR CUMULANTS OF THE STATISTICS
CASE 3--qMITHER K0ON

W2

Shave Mean x 100 Variance x i7 3  k 3 x 104 k4 x 104

0 9.26 4.36 6.39 1.54
02 7.39 2.40 2.50 0.430
0.5 6.66 1.69 1.37 0.185

1 6.32 1.41 0.991 0.115
2 6.13 1.28 0.833 0.0892
5 6.02 1.21 0.754 0.0772

10 5.98 1.19 0.731 0.0738
20 5.96 1.18 0o721 0,0722

S5.o95 1.16 0,709 0.0705

U2

2 x 10 41K, x 10O5Shave Mean x 100C Variance x 10 3  i.

0 7.18 1.98 1.68 2.32
0.2 7.12 1.93 1.60 2.15
0.5 5.78 1.10 0.647 0.623
1 5.68 1.03 0.581 0.531
2 5.63 1.00 0.552 0.492
5 5.59 0.987 0.535 0.470

10 5.58 0.981 0.529 0.463
20 5.58 0.978 0.527 0.459

5.57 0.975 0.525 0.455

A2

Shave Mean x 10 Variance x 10 k3 x 102 k4 x 10

0 5.96 1.39 10.89 14.27
0.2 4.44 n.614 2.94 2.39
0.5 4.11 0.460 1.75 1.14
1 3.97 0.406 1.39 0.808
2 3.91 0.382 1.25 0.685
5 3.87 0.370 1.17 0.625

10 3.86 0.366 1.15 0.608
20 3.85 0.364 1.14 0.600

3.84 0.362 1.13 0.591
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